Find the cocfficient of $x^{5}$ in $(x+3)^{8}$
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by
${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Assuming that $x^{5}$ occurs in the $(r+1)^{t h}$ term of the expansion $(x+3)^{8},$ we obtain
${T_{r + 1}} = {\,^8}{C_r}{(x)^{8 - r}}{(3)^r}$
Comparing the indices of $x$ in $x^{5}$ in $T_{r+1},$
We obtain $r=3$
Thus, the coefficient of $x^{5}$ is ${\,^8}{C_3}{(3)^3} = \frac{{8!}}{{3!5!}} \times {3^3} = \frac{{8 \cdot 7 \cdot 6 \cdot 5!}}{{3 \cdot 2 \cdot 5!}} \cdot {3^3} = 1512$
The ratio of the coefficient of $x^{15}$ to the term independent of $x$ in the expansion of ${\left( {{x^2} + \frac{2}{x}} \right)^{15}}$ is
The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in the ratio $1: 7: 42 .$ Find $n$
In the binomial $(2^{1/3} + 3^{-1/3})^n$, if the ratio of the seventh term from the beginning of the expansion to the seventh term from its end is $1/6$ , then $n =$
If the maximum value of the term independent of $t$ in the expansion of $\left( t ^{2} x ^{\frac{1}{5}}+\frac{(1- x )^{\frac{1}{10}}}{ t }\right)^{15}, x \geq 0$, is $K$, then $8\,K$ is equal to $....$
If the number of integral terms in the expansion of $\left(3^{\frac{1}{2}}+5^{\frac{1}{8}}\right)^{\text {n }}$ is exactly $33,$ then the least value of $n$ is